Tetrahedron Letters No. 51, pp 4887 - 4888, 1971. Pergamon Press. Printed in Great Britain.

A NEW METHOD FOR THE SYNTHESIS OF BUTATRIENES

Shoji Kajigaeshi, Nobuyuki Kuroda, Goro Matsumoto, Eiji Wada, and Akiko Nagashima .

Department of Industrial Chemistry, Yamaguchi University, Ube, Japan

(Received in Japan 15 November 1971; received in UK for publication 22 November 1971)

Methods for synthesizing butatrienes are not numerous 1). A technique of reduction of butynediols is known as an usual synthetic method for butatrienes, but the yields of butatrienes by this method are generally low. We wish to report a new method for the synthesis of butatrienes.

Reaction of olefins 1 with dichlorocarbene gave gem-dichlorocyclopropanes 2. The dichlorocarbene was generated from the reaction of ethyl trichloro-acetate with sodium methoxide², or chloroform with aqueous sodium hydroxide solution (50 %) in the presence of catalytic amounts of benzyltriethylammonium chloride³. Butatrienes 3 were immediately derived from 2 by the ring opening reaction of 2 with alkoxides (potassium t-butoxide in t-butyl alcohol, sodium methoxide in dimethyl sulfoxide, or sodium ethoxide in dimethyl sulfoxide) in satisfactory yields (see Table).

When hot pyridine was used as a base and a solvent instead of alkoxides in alcohols, 2-chlorobuta-1,3-diene derivatives 4 were obtained in good

4888 No. 51

yields. The compounds $\frac{4}{2}$ were easily converted into $\frac{3}{2}$ by refluxing with potassium \underline{t} -butoxide in \underline{t} -butyl alcohol. Consequently, it is apparent that the reaction of 2 with alkoxides led to 3 via intermediates 4.

A typical procedure is as follows. To a solution of potassium <u>t</u>-butoxide in <u>t</u>-butyl alcohol (potassium 0.12 g, 0.003 g-atom; <u>t</u>-butyl alcohol 50 ml) was added 0.43 g (0.001 mole) of 2,2-biphenylene-1,1-dichloro-3-(9-fluorenyl)-cyclopropane, which was prepared from the reaction of 1,1-biphenylene-3,3-biphenylene-1-propene⁴) with dichlorocarbene by method of Makosza et al³) in 46% yield. The mixture was refluxed for 30 min to afford dark red crystals 3c⁷): 0.32 g (91 %); mp 306°C (from dioxane).

	R1	R2	_R 38)	R4	Color	Mp(°C)	Spectra	Yield(%)
3a ⁵⁾	C ₆ H ₅	С ₆ Н ₅	C ₆ H ₅	С ₆ Н ₅	yellow	234	λ _{max} 424 mμ	73
3b ⁶)		√	C₅ H₅	C ₆ H ₅	orange	223-4	$\begin{cases} \lambda_{\text{max}} & 458 \text{ m}\mu \\ \nu_{\text{max}} & 2050 \text{ cm}^{-1} \end{cases}$	97
3c ⁷⁾		P			dark red		> max 484 mμ	91
3d	CH ₃ O	C ₆ H ₅	$C_6 H_5$	C ₆ H ₅	orange red	129 - 131	$\begin{cases} \lambda_{\text{max}} & 406 \text{ m} \mu \\ \nu_{\text{max}} & 2045 \text{ cm}^{-1} \end{cases}$	78
3e	СН ₃ О	С ₆ Н ₅	р-СН ₃ О- С ₆ Н ₄	C ₆ H ₅	"	oil	$v_{ m max}$ 2040 cm ⁻¹	
3 f	СН8 О	C ₆ H ₅	р-СН ₃ - С ₆ Н ₄	С ₆ Н ₅	n	n	$v_{\rm max}$ 2040 cm ⁻¹	50

REFERENCES

- 1. H. Fischer, "The Chemistry of Alkenes," ed. by Saul Patai, Interscience Publishers, New York, N.Y. (1964), p. 1088.
- 2. W. E. Parham and E. E. Schweizer, J. Org. Chem., 24, 1733 (1959).
- 3. M. Makosza and M. Wawrzyniewicz, Tetrahedron Letters, 1969, 4659.
- 4. S. Wawzonek and E. Dufek, J. Am. Chem. Soc., 78, 3530 (1956).
- 5. R. Kuhn and H. Krauch, Chem. Ber., 88, 309 (1055).
- 6. R. Kuhn and H. Fischer, Chem. Ber., 92, 1849 (1959).
- 7. E. Bergmann, H. Hoffmann and D. Winter, Chem. Ber., 66, 46 (1933).
- 8. When CH_3 group was chosen as R^3 , enyne derivatives $R^1\,R^2\,CH-C\equiv C-CR^4=CH_2$ and allene derivatives $R^1\,R^2\,C=C=CH-CR^4=CH_2$ were obtained.